Journal of Organometallic Chemistry, 326 (1987) C46-C48 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

Platinum-silver clusters: synthesis and crystal structure of $[Pt_3Ag(\mu-CO)_3(PPh_3)_5]ClO_4 \cdot 2H_2O$

Sumit Bhaduri, Krishna Sharma,

Alchemie Research Centre, P.O. Box 155, Thane-Belapur Road, Thane 400 601, Maharashtra (India)

Peter G. Jones and Cristina Freire Erdbrügger

Institut für anorganische Chemie der Universität, Tammannstrasse 4, 3400 Göttingen (Fed. Rep. of Germany) (Received February 17th, 1987)

Abstract

Reaction of $[NBu_4]_2[Pt_{12}(CO)_{24}]$ with $[Ag(PPh_3)_4]ClO_4$ and PPh₃ leads to two isolable platinum-silver clusters; the title complex was characterised by single crystal X-ray diffraction. The Pt₃Ag core is tetrahedral; one Pt atom is seven-coordinate, the other two are six-coordinate.

We recently reported the synthesis, X-ray structure determination and catalytic activity of a platinum-iridium cluster [1]. The platinum carbonyl complex $[NBu_4]_2[Pt_{12}(CO)_{24}]$ (I) was found to be a useful precursor. Here we report that the reaction of I with $[Ag(PPh_3)_4]ClO_4$ (II) and PPh₃ leads to two platinum-silver clusters. The cluster $[Pt_3Ag(\mu-CO)_3(PPh_3)_5]ClO_4 \cdot 2H_2O$ (III) has been characterised by single crystal X-ray diffraction. We believe this is the first structural characterisation of a platinum-silver cluster, although a few compounds containing platinum-silver bonds are known [2]. There are indeed few clusters of silver with any transition metal [3].

The addition of increasing amounts of solid II to a solution of I in tetrahydrofuran leads to $[NBu_4]_2[Pt_{18}(CO)_{36}]$ (V), a species formulated as $[NBu_4][Pt_6Ag-(PPh_3)_4(CO)_8]$ (IV), and III, respectively. V was characterised by comparison of its spectra with those of an authentic sample [4] and III and IV were identified from complete elemental analysis and infrared and ¹H NMR spectra [5 *]. The formation of metallic silver, the isolation of the known cluster [Pt_3(CO)_3(PPh_3)_4] (VI) [6], and the improved yields of III and IV with added PPh_3 suggest that the reaction

^{*} Asterisk indicates a note in the list of references.

pathway is as shown in equations 1-3. Indeed, optimum yields of V, IV and III are obtained when the stoichiometries shown in eq. 1-3 are used.

$$3(I) + 2(II) \rightarrow 2(V) + 2Ag + 2Bu_4N^+ClO_4^- + 8PPh_3$$
(1)

$$3(I) + 4(II) + 24PPh_3 \rightarrow 2(IV) + 2Ag + 4Bu_4N^+ClO_4^- + 8(VI) + 32CO$$
(2)

$$3(I) + 8(II) + 18PPh_3 \rightarrow 2(III) + 6Ag + 6Bu_4N^+ClO_4^- + 10(VI) + 36CO$$
 (3)

The nature of III was unambiguously confirmed by a single crystal X-ray diffraction study (see Fig. 1). As expected from its characteristic electron count (56), the Pt₃Ag core is tetrahedral [7]. Comparison with the 54-electron platinum-gold cluster [Pt₃Au(CO)₃(Pcy₃)₄]ClO₄ (VII) [8], which also contains a tetrahedral core, reveals the following differences. Unlike VII, where all the Pt atoms are six-coordinate and equivalent, III contains a unique seven-cooordinate platinum atom, Pt(1). The average Pt-Pt bond lengths are identical in the two clusters (2.696 Å), but the Pt-Ag bonds are appreciably longer than the Pt-Au bonds (av. 2.827, 2.758 Å respectively). The Pt-Ag bond lengths differ considerably (2.741-2.915 Å), in accordance with theoretical predictions [7]. The Pt-Ag bond lengths in the literature [2] lie in the range 2.772-2.815 Å with the exception of one very short bond, 2.637 Å.

Compound IV has a characteristic electron count of 96, the expected value for an edge-sharing seven-vertex polyhedron. Attemps to grow a single crystal of IV are in progress.

X-Ray structure determination of III

Crystal data. $C_{93}H_{79}AgClO_9P_5Pt_3$, $M_r = 2222.1$. Monoclinic, $P2_1/n$, a 14.021(4), b 25.553(7), c 24.265(7) Å, β 90.86(3)°, U 8693 Å³, Z 4, D_x 1.70 g cm⁻³, F(000) 4320, $\lambda(Mo-K_{\alpha})$ 0.71069 Å, μ 5.3 mm⁻¹. 13343 profile-fitted reflections [9] measured on Stoe-Siemens four-circle diffractometer, $2\theta_{max}$ 50°. 8778 unique reflec-

Fig. 1. The $Pt_3Ag(CO)_3P_5$ core of compound III in the crystal. Selected bond lengths (Å): Pt(1)-Pt(2) 2.712(1), Pt(1)-Pt(3) 2.701(1), Pt(2)-Pt(3) 2.674(1), Pt(1)-Ag(1) 2.741(1), Pt(2)-Ag(1) 2.823(1), Pt(3)-Ag(1) 2.915(1), Pt(1)-P(1) 2.329(3), Pt(1)-P(4) 2.393(4), Pt(2)-P(2) 2.274(4), Pt(3)-P(3) 2.266(3), Ag(1)-P(5) 2.392(4).

tions with $|F| > 4\sigma(F)$ used for all calculations (program system SHELX). Crystal size $0.7 \times 0.2 \times 0.15$ mm (red needle, elongated along [103]). Absorption correction based on azimuthal scans (transmissions 0.70-0.87). Heavy-atom method, refinement on F to R 0.061, R_w 0.053 for 347 parameters (Pt, Ag, P, carbonyl O anisotropic; phenyl rings as rigid groups with C-C 1.395, C-H 0.96 Å, all angles 120°; perchlorate disordered over two positions with one common O; two water O consistent with NMR spectrum; weighting scheme $w^{-1} = \sigma^2(F) + 0.0002 F^2$). Further crystallographic details (atom coordinates, complete bond lengths and angles, structure factors and temperature factors) can be ordered from the Fachinformationszentrum Energie Physik Mathematik, 7514 Eggenstein-Leopoldshafen 2, F.R.G. Please quote reference number CSD 52356 and the full literature citation.

We thank IEL Limited and the Fonds der Chemischen Industrie for financial support.

References

- 1 S. Bhaduri, K.R. Sharma, W. Clegg, G.M. Sheldrick and D. Stalke, J. Chem. Soc., Dalton Trans., (1984) 2851.
- 2 R. Usón, J. Forniés, M. Tomás, J.M. Casas, F.A. Cotton and L.R. Falvello, Inorg. Chem., 25 (1986) 4519 and ref. therein. All these compounds can be assigned the oxidation numbers I for Ag and II for Pt, and we therefore prefer not to term them "clusters".
- 3 M.J. Freeman, M. Green, A.G. Orpen, I.D. Salter and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1983) 1332; J.A. Ladd, H. Hope and A.L. Balch, Organometallics, 3 (1984) 1838; M. Fajardo, M.P. Gomez-Sal, H.D. Holden, B.F.G. Johnson, J. Lewis, R.C.S. McQueen and P.R. Raithby, J. Organomet. Chem., 267 (1984) C25; F.B. Achechi, J. Ott and L.M. Venanzi, J. Am. Chem. Soc., 107 (1985) 1760.
- 4 G. Longoni and P. Chini, J. Am. Chem. Soc., 98 (1976) 7225; A. Basu, S. Bhaduri and K.R. Sharma, J. Chem. Soc., Dalton Trans., (1984) 2315.
- 5 Micro crystals of III and IV, bright red and deep-brown, respectively, were obtained by recrystallization from a mixture of dichloromethane, methanol and diethyl ether after purification by passing the complexes through a short silica gel column with dichloromethane/methanol (50/50) as eluant (III; Found: C, 50.1; H, 3.4. C₉₃H₇₉O₉P₅ClAgPt₃ calcd.: C, 50.2; H, 3.5%; IV: Found: C, 41.2; H, 3.5; N, 0.5. C₉₆H₉₆NO₈P₄Pt₆Ag calcd.: C, 41.3; H, 3.4; N, 0.5%). Heavy atom ratios were determined by EDAX analysis and were consistent with the formulations. IR data III, 1825 (s), and 1840 (s) cm⁻¹; IV, 2040 (s), 2020 (s), 1970 (w), 1950 (m), 1830 (vs), 1800 (vs) cm⁻¹ in CH₂Cl₂. Proton NMR for both in CD₃COCD₃ 7.3 (b) ppm; for IV additional signals at 0.9 (b) and 1.2 (b) ppm.
- 6 A. Abinati, G. Carturan and A. Musco, Inorg. Chim. Acta, 16 (1976) L3.
- 7 D.M.P. Mingos, Acc. Chem. Res., 17 (1984) 311; Chem. Soc. Rev., 15 (1986) 31; D.G. Evans and D.M.P. Mingos, J. Organomet. Chem., 240 (1982) 321.
- 8 C.E. Briant, R.W.M. Wardle and D.M.P. Mingos, J. Organomet. Chem., 267 (1984) C49.
- 9 W. Clegg, Acta Crystallogr. A, 37 (1981) 22.

C48